Identification of risk factors for hospital admission using multiple-failure survival models: a toolkit for researchers.

نویسندگان

  • Leo D Westbury
  • Holly E Syddall
  • Shirley J Simmonds
  • Cyrus Cooper
  • Avan Aihie Sayer
چکیده

BACKGROUND The UK population is ageing; improved understanding of risk factors for hospital admission is required. Linkage of the Hertfordshire Cohort Study (HCS) with Hospital Episode Statistics (HES) data has created a multiple-failure survival dataset detailing the characteristics of 2,997 individuals at baseline (1998-2004, average age 66 years) and their hospital admissions (regarded as 'failure events') over a 10 year follow-up. Analysis of risk factors using logistic regression or time to first event Cox modelling wastes information as an individual's admissions after their first are disregarded. Sophisticated analysis techniques are established to examine risk factors for admission in such datasets but are not commonly implemented. METHODS We review analysis techniques for multiple-failure survival datasets (logistic regression; time to first event Cox modelling; and the Andersen and Gill [AG] and Prentice, Williams and Peterson Total Time [PWP-TT] multiple-failure models), outline their implementation in Stata, and compare their results in an analysis of housing tenure (a marker of socioeconomic position) as a risk factor for different types of hospital admission (any; emergency; elective; >7 days). The AG and PWP-TT models include full admissions histories in the analysis of risk factors for admission and account for within-subject correlation of failure times. The PWP-TT model is also stratified on the number of previous failure events, allowing an individual's baseline risk of admission to increase with their number of previous admissions. RESULTS All models yielded broadly similar results: not owner-occupying one's home was associated with increased risk of hospital admission. Estimated effect sizes were smaller from the PWP-TT model in comparison with other models owing to it having accounted for an increase in risk of admission with number of previous admissions. For example, hazard ratios [HR] from time to first event Cox models were 1.67(95 % CI: 1.36,2.04) and 1.63(95 % CI:1.36,1.95) for not owner-occupying one's home in relation to risk of emergency admission or death among women and men respectively; corresponding HRs from the PWP-TT model were 1.34(95 % CI:1.15,1.56) for women and 1.23(95 % CI:1.07,1.41) for men. CONCLUSION The PWP-TT model may be implemented using routine statistical software and is recommended for the analysis of multiple-failure survival datasets which detail repeated hospital admissions among older people.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Survival analysis of thalassemia major patients using Cox, Gompertz proportional hazard and Weibull accelerated failure time models

Background: Thalassemia major (TM) is a severe disease and the most common anemia worldwide. The survival time of the disease and its risk factors are of importance for physicians. The present study was conducted to apply the semi-parametric Cox PH model and use parametric proportional hazards (PH) and accelerated failure time (AFT) models to identify the risk factors related to survival of TM ...

متن کامل

Evaluation of Survival Analysis Models for Predicting Factors Infuencing the Time of Brucellosis Diagnosis

Background:Brucellosis or Malta fever is one of the most common zoonotic diseases in the world. In addition to causing human suffering and dire economic impact on animals, due to the high prevalence of Brucellosis in the western regions of Isfahan province, this study aimed to analyze effective factors in the time of Brucellosis diagnosis using parametric and semi-parametric mo...

متن کامل

Identification and assessment of common errors in the admission process of patients in the Central Emergency Department of Imam Reza Hospital applying the prospective approach of "Failure Mode Effects Analysis" (FMEA)

Background and Aim : Emergency ward is among hospital areas with high risk of errors, thus, implementing measures to identify and correct the errors is essential. The object of this study is to identify and assess the errors of the process of admitting patients in Emergency Department of Imam Reza Hospital using Failure Mode Effects Analysis, as one of the tools to assess and manage risk, as we...

متن کامل

کاربرد مدل‌های شفایافته در تحلیل بقای بیماری تالاسمی ماژور

 Background: Identification of the factors influencing short term and long term survival for patients is one of the important concerns in medical society. With determining the risk factors and also health factors of a disease, valuable information can be obtained. In some cases, such as high rate of censoring, the use of standard survival models for analysis may cause to loss in some of...

متن کامل

Risk Assessment of Drug Management Process in Women Surgery Department of Qaem Educational Hospital (QEH) Using HFMEA Method (2013)

Evaluation and improvement of drug management process is essential for patient safety. The present study was performed whit the aim of assessing risk of drug management process in Women Surgery Department of QEH using HFMEA method in 2013. A mixed method was used to analys failure modes and their effects with HFMEA. To classify failure modes; nursing errors in clinical management model, for cla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • BMC medical research methodology

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2016